Odpowiedź:
[tex]\frac{x^2+x-6}{x^2-4}=0\\\\Zalo\.zenia\\\\x^2-4\neq 0\\\\(x-2)(x+2)\neq 0\\\\x-2\neq 0\ \ \ \ i\ \ \ \ x+2\neq 0\\\\x\neq 2\ \ \ \ \ \ i\ \ \ \ x\neq -2\\\\D=R\setminus\left\{-2,2\right\}\\\\\\\frac{x^2+x-6}{x^2-4}=0\\\\\frac{x^2+3x-2x-6}{(x-2)(x+2)}=0\\\\\frac{x(x+3)-2(x+3)}{(x-2)(x+2)}=0\\\\\frac{(x-2)(x+3)}{(x-2)(x+2)}=0\\\\\frac{x+3}{x+2}=0\\\\x+3=0\\\\x=-3[/tex]