Odpowiedź:
a=12
b=16
[tex]c = \sqrt{ {a}^{2} + {b}^{2} } = \sqrt{ {12}^{2} + {16}^{2} } = \sqrt{144 + 256} = \sqrt{400} = 20 \\ \\ \sin( \alpha ) = \frac{a}{c} = \frac{12}{20} = \frac{3}{5} \\ \sin( \beta ) = \frac{b}{c} = \frac{16}{20} = \frac{4}{5} \\ \\ \cos( \alpha ) = \frac{b}{c} = \frac{16}{20} = \frac{4}{5} \\ \cos( \beta ) = \frac{a}{c} = \frac{12}{20} = \frac{3}{5} \\ \\ tg \alpha = \frac{a}{b} = \frac{12}{16} = \frac{3}{4} \\ tg \beta = \frac{b}{a} = \frac{16}{12} = \frac{4}{3} \\ \\ ctg \alpha = \frac{b}{a} = \frac{16}{12} = \frac{4}{3} \\ ctg \beta = \frac{a}{b} = \frac{12}{16} = \frac{3}{4} \\[/tex]