uzasadnij,że dla dowolnej liczby naturalnej n
a)2^n+2^n+2^n+2^n=2^n+2
b) (2^n+2^n)^2=4x4^n


Odpowiedź :

[tex]zad.a\\\\Teza:~~2^{n} +2^{n} +2^{n} +2^{n} =2^{n+2} \\\\Dowod:\\\\L=2^{n} +2^{n} +2^{n} +2^{n} =4\cdot 2^{n}=2^{2} \cdot 2^{n}=2^{n+2}\\\\P=2^{n+2}~~~~~~~~cbdu\\\\\\zad.b\\\\Teza:~~(2^{n} +2^{n} )^{2} =4\cdot 4^{n} \\\\Dowod:\\\\L=(2^{n} +2^{n} )^{2}=(2\cdot 2^{n} )^{2}=(2^{1} \cdot 2^{n} )^{2}=(2^{n+1} )^{2}=2^{2\cdot (n+1)} =2^{2n+2} =2^{2} \cdot 2^{2n} =4\cdot (2^{2} )^{n} =4\cdot 4^{n} \\\\P=4\cdot 4^{n} \\\\L=P~~~~~~~~cbdu[/tex]