Wykaż, że dla liczb x i y różnych znaków prawdziwa jest nierówność:
(x-√5y) ²- (x+ √5y) ² > 0


Odpowiedź :

[tex](x-\sqrt5y)^2-(x+\sqrt5y)^2 > 0\\(x-\sqrt5y+x+\sqrt5y)(x-\sqrt5y-x-\sqrt5y) > 0\\2x\cdot (-2\sqrt5y) > 0\\-4\sqrt5xy > 0\\xy < 0\\\Downarrow\\x < 0 \wedge y > 0 \vee x > 0 \wedge y < 0[/tex]