Szczegółowe wyjaśnienie:
[tex]c)\ w(x)=2x^5+4x^4-6x^3=2x^3(x^2+2x-3)=2x^3(x^2+3x-x-3)\\\\=2x^3\bigg[x(x+3)-1(x+3)\bigg][/tex]
[tex]\huge\boxed{w(x)=2x^3(x+3)(x-1)}[/tex]
[tex]d)\ w(x)=x^5-3,5x^4-2x^3=x^3(x^2-3,5x-2)[/tex]
[tex]x^2-3,5x-2\\a=1,\ b=-3,5,\ c=-2\\\Delta=(-3,5)^2-4\cdot1\cdot(-2)=12,25+8=20,25\\\sqrt\Delta=\sqrt{20,25}=4,5\\\\x_1=\dfrac{-(-3,5)-4,5}{2\cdot1}=\dfrac{3,5-4,5}{2}=-\dfrac{1}{2}=-0,5\\\\x_2=\dfrac{-(-3,5)+4,5}{2\cdot1}=\dfrac{3,5+4,5}{2}=\dfrac{8}{2}=4\\\\x^2-3,5x-2=(x-(-0,5))(x-4)=(x+0,5)(x-4)[/tex]
[tex]\huge\boxed{w(x)=x^3(x+0,5)(x-4)}[/tex]