help. klasa 5. daje naj.

Znajdź liczbę naturalną, która jest:
a) o 1 ½ większa od swojej odwrotności, b) o 2 ⅔ większa od swojej odwrotności, c) o 7 ⅞ większa od swojej odwrotności.​


Help Klasa 5 Daje Naj Znajdź Liczbę Naturalną Która Jesta O 1 Większa Od Swojej Odwrotności B O 2 Większa Od Swojej Odwrotności C O 7 Większa Od Swojej Odwrotno class=

Odpowiedź :

Odpowiedź:

Szczegółowe wyjaśnienie:

Na początek przypomnienie: liczby naturalne to liczby całkowite dodatnie, a odwrotność "a" to "1/a" (przy założeniu, że "a" jest różne od 0), liczymy:

a)

a = 1/a  + 3/2   / mnożymy obustronnie przez 2a

2a² = 2 + 3a

2a²-3a-2=0 / liczymy "deltę" i znajdujemy pierwiastki równania kwadratowego:

Δ = b² - 4ac

Δ= (-3)² - (  4 razy 2 razy (-2) )

Δ = 9 + 16

Δ = 25, √Δ = 5

a1 =  (-b - √Δ)/ 2a = (3-5)/4 = -2/4 = -1/2, odpada, (-1/2) nie jest liczbą naturalną

a2 = (-b + √Δ)/2a = (3+5)/4 = 8/4 = 2, liczba 2 jest liczbą naturalną

Odpowiedź: 2

b)

a = 1/a  + 8/3   / mnożymy obustronnie przez 3a

3a² = 3 + 8a

3a²-8a-3=0 / liczymy "deltę" i znajdujemy pierwiastki równania kwadratowego:

Δ = b² - 4ac

Δ= (-8)² - (  4 razy 3 razy (-3) )

Δ = 64 + 36

Δ = 100, √Δ = 10

a1 =  (-b - √Δ)/ 2a = (8-10)/6 = -2/6 = -1/3, odpada, (-1/3) nie jest liczbą naturalną

a2 = (-b + √Δ)/2a = (8+10)/6 = 18/6 = 3, liczba 3 jest liczbą naturalną

Odpowiedź: 3

c)

a = 1/a  + 63/8   / mnożymy obustronnie przez 8a

8a² = 8 + 63a

8a²-63a-8=0 / liczymy "deltę" i znajdujemy pierwiastki równania kwadratowego:

Δ = b² - 4ac

Δ= (-63)² - (  4 razy 8 razy (-8) )

Δ = 3969 + 256

Δ = 4225, √Δ = 65

a1 =  (-b - √Δ)/ 2a = (63-65)/16 = -2/16 = -1/8, odpada, (-1/8) nie jest liczbą naturalną

a2 = (-b + √Δ)/2a = (63+65)/16 = 128/16 = 8, liczba 8 jest liczbą naturalną

Odpowiedź: 8

Proszę o naj:)