Oblicz:
3 ^ (1/2) * 3 ^ (1/2) + 32 ^ (1/2) * 2 ^ (1/2)

72 ^ (1/2) * 2 ^ (1/2) + 11 ^ (1/2) * 11 ^ (1/2)

4 ^ (1/3) * 16 ^ (1/3) + 3 ^ (1/3) * 9 ^ (1/3)

108 ^ (1/3) * 2 ^ (1/3) + 5 ^ (1/3) * 25 ^ (1/3)

5 ^ (1/2) * 5 ^ (1/2) + 7 ^ (1/2) * 7 ^ (1/2)

2 ^ (1/2) * 8 ^ (1/2) + 12 ^ (1/2) * 3 ^ (1/2)


Odpowiedź :

Odpowiedź i szczegółowe wyjaśnienie:

[tex]3^{1/2}\cdot3^ {1/2} + 32^{1/2}\cdot 2^{1/2}=3^{\frac12+\frac12}+(32\cdot2)^\frac12=3^1+64^\frac12=3+\sqrt{64}=3+8=11[/tex]

[tex]72^{\frac12}\cdot 2^\frac12 + 11^{\frac12}\cdot 11 ^\frac12=(72\cdot2)^\frac12+11^{\frac12+\frac12}=144^\frac12+11^1=\sqrt{144}+11=12+11=23[/tex]

[tex]4 ^\frac13\cdot 16 ^\frac13 + 3 ^\frac13\cdot9 ^\frac13=(4\cdot16)^\frac13+(3\cdot9)^\frac13=64^\frac13+27^\frac13=(4^3)^\frac13+(3^3)^\frac13=\\\\=4^{3\cdot\frac13}+3^{3\cdot\frac13}=4+3=7\\\\\\[/tex]

[tex]108 ^ \frac13\cdot2 ^\frac13 + 5 ^\frac13\cdot25 ^\frac13=(108\cdot2)^\frac13+(5\cdot25)^\frac13=216^\frac13+125^\frac13=\\\\=(6^3)^\frac13+(5^3)^\frac13=6^{3\cdot\frac13}+5^{3\cdot\frac13}=6+5=11\\\\\\\\5^\frac12\cdot5 ^\frac12 + 7 ^\frac12\cdot7 ^\frac12=5^{\frac12+\frac12}+6^{\frac12+\frac12}}=5^1+7^1=5+7=12\\\\\\2 ^\frac12\cdot 8 ^\frac12 + 12 ^\frac12\cdot 3 ^\frac12=(2\cdot8)^\frac12+(12\cdot3)^\frac12=16^\frac12+36^\frac12=\sqrt{16}+\sqrt{36}=\\\\=4+6=10[/tex]

Wykorzystano własności potęgowania:

[tex]a^n\cdot a^n=a^{n+m}\\\\(a^n)^m=a^{n\cdot m}\\\\a^\frac12=\sqrt{a}\\\\[/tex]