Odpowiedź :
Obliczenia
[tex]\sqrt[5]{-2}\cdot\sqrt[5]{16}=\sqrt[5]{-2\cdot16}=\sqrt[5]{-32}=\sqrt[5]{(-2)^5}=-2\\\\\sqrt[4]4\cdot\sqrt[4]{\frac{1}{4}}\cdot\sqrt[4]2=\sqrt[4]{4\cdot\frac{1}{4}\cdot2}}=\sqrt[4]1=\sqrt[4]{1^4}=1\\\\\sqrt[7]{-\sqrt[6]{-\sqrt[5]{-1}}}=\sqrt[7]{-\sqrt[6]{-\sqrt[5]{(-1)^5}}}=\sqrt[7]{-\sqrt[6]{-(-1)}}=\sqrt[7]{-\sqrt[6]1}=\sqrt[7]{-1}=-1\\\\\sqrt[4]{2\sqrt{64}}=\sqrt[4]{2\sqrt{8^2}}=\sqrt[4]{2\cdot8}=\sqrt[4]{16}=\sqrt[4]{2^4}=2[/tex]
[tex]a) \ \sqrt[5]{-2} \cdot \sqrt[5]{16} = \sqrt[5]{-32} = \boxed{-2}[/tex]
[tex]b) \ \sqrt[4]{4} \cdot \sqrt[4]{\frac{1}{8}} \cdot \sqrt[4]{2} = \sqrt[4]{\frac{8}{8}} = \boxed{1}[/tex]
[tex]c) \ \sqrt[7]{-\sqrt[6]{-\sqrt[5]{-1}}} = \boxed{-1}[/tex]
[tex]d) \ \sqrt[4]{2\sqrt{64}} = \sqrt[4]{2 \cdot 8} = \sqrt[4]{16} = \boxed{2}[/tex]
Pozdrawiam! ~ MatmFizyk