Odpowiedź :
[tex] \sqrt[3]{ - {e}^{3} + 19} = - 2 | ^{3} \\ - {e}^{3} + 19 = { - 2}^{3} \\ - {e}^{3} + 19 = - 8 \\ - {e}^{3} = - 27 | \times ( - 1) \\ {e}^{3} = 27 \\ e = \sqrt[3]{27} \\ e = 3[/tex]
Odpowiedź:
Dla [tex]\huge\boxed{e=3}[/tex] spełnione jest równie [tex]\huge\boxed{\sqrt[3]{-e^{3} +19} =-2}[/tex]
Szczegółowe wyjaśnienie:
Korzystamy ze wzoru:
- [tex]\sqrt[3]{(-x)^{3} } =(-x)^{3\cdot \frac{1}{3} } =(-x)^{1} =-x[/tex]
Obliczamy:
[tex]\sqrt[3]{(-y)^{3} } =-2~~\land~~\sqrt[3]{(-x)^{3} } =-x~~\Rightarrow~~\sqrt[3]{(-2)^{3} } =-2\\\\\boxed{\sqrt[3]{(-2)^{3} } =-2}\\\\\sqrt[3]{\boxed{-8} } =-2~~\land~~\sqrt[3]{\boxed{-e^{3} +19}} =-2~~\Rightarrow~~-e^{3} +19=-8\\\\-e^{3} +19=-8~~\mid -19\\\\-e^{3} +19-19=-8-19\\\\-e^{3} =-27~~\mid \cdot (-1)\\\\e^{3} =27\\\\e^{3} =3^{3} ~~\Rightarrow~~\huge\boxed{e=3}[/tex]
Otrzymujemy równanie: [tex]\huge\boxed{\sqrt[3]{-3^{3} +19} =-2}[/tex]
sprawdzamy:
[tex]\sqrt[3]{-3^{3} +19} =-2\\\\L=\sqrt[3]{-3^{3} +19}=\sqrt[3]{-27 +19}=\sqrt[3]{-8}=\sqrt[3]{(-2)^{3} } =(-2)^{3\cdot \frac{1}{3} }=(-2)^{1} =-2\\\\P=-2\\\\L=P~~~~~~cbdu[/tex]