Oblicz:
a)
[tex]( \sqrt{23} ) ^{2} - \sqrt[3]{13 ^{3 } } = [/tex]
b)
[tex]( \sqrt[3]{4} ) ^{3} + ( \sqrt{5} ) ^{2} = [/tex]
c)
[tex](3 \sqrt{7} )^{2} - (2 \sqrt[3]{5} ) ^{3} = [/tex]
d)
[tex]4( \sqrt[3]{10} )^{3} + (2 \sqrt{3} ) ^{2} = [/tex]
e)
[tex]( \sqrt[3]{5} ) ^{6} - ( \sqrt{2} ) ^{6} = [/tex]


Odpowiedź :

Odpowiedź:

a)

(√23)² - ∛13³ = 23 - 13 = 10

b)

(∛4)³ + (√5)² = 4 + 5 = 9

c)

(3√7)² - (2∛5)³ = 9 * 7 - 8 * 5 = 63 - 40 = 23

d)

4(∛10)³ + (2√3)² = 4 * 10 + 4 * 3 = 40 + 12 = 52

e)

(∛5)^6 - (√2)^6 = 5² - 2³ = 25 - 8 = 17

Szczegółowe wyjaśnienie:

Odpowiedź:

[tex]a)\ \ (\sqrt{23})^2-\sqrt[3]{13^3}=23-13=10\\\\b)\ \ (\sqrt[3]{4})^3+(\sqrt{5})^2=4+5=9\\\\c)\ \ (3\sqrt{7})^2-(2\sqrt[3]{5})^3=3^2\cdot(\sqrt{7})^2-2^3\cdot(\sqrt[3]{5})^3=9\cdot7-8\cdot5=63-40=23\\\\d)\ \ 4(\sqrt[3]{10})^3+(2\sqrt{3})^2=4\cdot10+2^2\cdot(\sqrt{3})^2=40+4\cdot3=40+12=52\\\\e)\ \ (\sqrt[3]{5})^6-(\sqrt{2})^6=(5^{\frac{1}{3}})^6-(2^{\frac{1}{2}})^6=5^2-2^3=25-8=17[/tex]