Odpowiedź:
[tex]\frac{x}{x-4}=x-3\\\\x-4\neq 0\\\\x\neq 4\\\\D=R\setminus\left\{4\right\}\\\\\frac{x}{x-4}=x-3\\\\x=(x-3)(x-4)\\\\x-(x-3)(x-4)=0\\\\x-(x^2-4x-3x+12)=0\\\\x-x^2+4x+3x-12=0\\\\-x^2+8x-12=0\ \ /\cdot(-1)\\\\x^2-8x+12=0\\\\x^2-2x-6x+12=0\\\\x(x-2)-6(x-2)=0\\\\(x-2)(x-6)=0\\\\x-2=0\ \ \ \ \vee\ \ \ \ x-6=0\\\\x=2\ \ \ \ \ \ \ \ \vee\ \ \ \ x=6[/tex]