Odpowiedź :
Odpowiedź:
[tex] \sin( \alpha ) = \frac{ \sqrt{5} }{3} [/tex]
[tex] \cos( \alpha ) = \frac{2}{3} [/tex]
[tex] \tan( \alpha ) = \frac{ \sqrt{5} }{2} [/tex]
[tex] \cot( \alpha ) = \frac{2}{ \sqrt{5} } = \frac{2 \sqrt{5} }{5} [/tex]
[tex]a) = \sqrt{1 - ( { \frac{ \sqrt{2} }{2} })^{2} } = \sqrt{1 - \frac{2}{4} } = \sqrt{ \frac{1}{2} } = \frac{ \sqrt{2} }{2} [/tex]
[tex]b) = {( \frac{1}{2} + 1) }^{ - 3} = {( \frac{2}{3} )}^{ 3} = \frac{8}{27} [/tex]
[tex] \frac{3 \sqrt{3} }{3} - \frac{ \sqrt{3} }{2} = \frac{6 \sqrt{3} }{6} - \frac{3 \sqrt{3} }{6} = \frac{ \sqrt{3} }{2} [/tex]