Odpowiedź :
[tex]e)\\\\(\frac{3}{5})^5*(3\frac{1}{3})^4=\frac{3}{5}*(\frac{3}{5})^4*( \frac{10}{3})^4= \frac{3}{5}*(\frac{\not{3}^1}{\not{5}^1}*\frac{\not{10}^2}{\not{3}^1})^4=\frac{3}{5}*2^4=\frac{3}{5}*16=\frac{48}{5}=9\frac{3}{5}[/tex]
[tex]f)\\\\ \frac{8^2*5 }{4^2 }=\frac{8^2 }{4^2 } *5=(\frac{8}{4})^2*5=2^2*5=4*5=20[/tex]
[tex]g)\\\\ (1\frac{1}{4})^3:(1,5)^3=(1\frac{1}{4} :1,5)^3=( \frac{5}{4} : \frac{15}{10})^3=( \frac{5}{4}* \frac{10}{15})^3 =( \frac{5}{\not{4}^2}* \frac{\not{2}^1}{3})^3 =\\\\=(\frac{5}{6})^3 =\frac{125}{216}[/tex]
[tex]stosujemy\ wzory :\\\\a^n*b^n=(a*b)^n\\\\ a^n:b^n=(a:b)^n[/tex]