Odpowiedź :
Odpowiedź:
a).
[tex] \sqrt{ {24}^{2} + {7}^{2} } = \sqrt{576 + 49} = \sqrt{625} = 25[/tex]
b)
[tex] \sqrt{ {5}^{2} + {6}^{2} } = \sqrt{25 + 36} = \sqrt{61 } [/tex]
c)
[tex] \sqrt{ {13}^{2} - {12}^{2} } = \sqrt{169 - 144} = \sqrt{25} = 5[/tex]
Korzystamy z twierdzenia Pitagorasa:
[tex]a^{2}+b^{2} = c^{2}[/tex]
gdzie:
a,b - przyprostokątne,
c - przeciwprostokątna
a)
[tex]7^{2}+24^{2} = c^{2}\\\\49 + 576 = c^{2}\\\\c^{2} = 625\\\\c = \sqrt{625}\\\\\boxed{c = 25}[/tex]
b)
[tex]5^{2}+6^{2} = c^{2}\\\\25+36 = c^{2}\\\\c^{2} = 61\\\\\boxed{c = \sqrt{61}}[/tex]
c)
[tex]a^{2}+12^{2} = 13^{2}\\\\a^{2} + 144 = 169\\\\a^{2} = 169-144 = 25\\\\a = \sqrt{25}\\\\\boxed{a = 5}[/tex]