Oblicz pole powierzchni całkowitej ostrosłupów prawidłowych, których siatki przedstawiono na rysunku.​

Oblicz Pole Powierzchni Całkowitej Ostrosłupów Prawidłowych Których Siatki Przedstawiono Na Rysunku class=

Odpowiedź :

Odpowiedź:

1. Dane:

a = 2

h = 6

Pc = Pb + Pp

Pb = 6 * a*h/2

Pb = 6 * 2*6/2 = 6 * 12/2 = 6 * 6 = 36

Pp = 6 * a²v3/4

Pp = 6 * 2²v3/4 = 6* 4v3/4 = 6 * v3= 6v3

Pc = 36 + 6v3

2. Dane:

a = 6.

h = 10

Pc = Pb + Pp

Pb = 3 * a*h/2

Pb = 3 * 6*10/2 = 3 * 60/2 = 3* 30 = 90

Pp = a²v3/4

Pp = 6²v3/4 = 36v3/4= 9v3

Pc = 90 + 9v3

( Pc - pole powierzchni całkowitej; Pb - pole powierzchni bocznej; Pp - pole podstawy)

a)

[tex]Pp = 6 \times \frac{ {2}^{2} \sqrt{3} }{4} = 6 \times \frac{4 \sqrt{3} }{4} = 6 \sqrt{3} {cm}^{2} [/tex]

[tex]Pb = 6 \times \frac{2 \times 6}{2} = 6 \times 6 = 36 {cm}^{2} [/tex]

[tex]Pc = \underline{ \underline{( 36 + 6 \sqrt{3} {)cm}^{2} }}[/tex]

b)

[tex]Pp = \frac{ {6}^{2} \sqrt{3} }{4} = \frac{36 \sqrt{3} }{4} = 9 \sqrt{3} {cm}^{2} [/tex]

[tex]Pb = 3 \times \frac{6 \times 10}{2} = 3 \times \frac{60}{2} = 3 \times 30 = 90 {cm}^{2} [/tex]

[tex]Pc = \underline{ \underline{( 90 + 9 \sqrt{3} {)cm}^{2} }}[/tex]