Rozwiąż Algebraicznie układ równań: [tex]\left \{ {{y=x^{2} } \atop {y=x+2}} \right.[/tex]

Odpowiedź :

[tex]\left \{ {{y=x^2} \atop {y=x+2}} \right. \\\left \{ {{y=x^2} \atop {x^2=x+2}} \right. \\\left \{ {{y=x^2} \atop {x^2-x-2=0}} \right. \\\Delta=b^2-4ac\\\Delta=(-1)^2-4*1*(-2)=1+8=9\\\sqrt\Delta=3\\x_1=\frac{-b-\sqrt\Delta}{2a}=\frac{1-3}{2}=\frac{-2}{2}=-1\\x_2=\frac{-b+\sqrt\Delta}{2a}=\frac{1+3}{2}=\frac{4}{2}=2[/tex]

[tex]\left \{ {{y=x^2} \atop {x=-1}} \right. \vee \left \{ {{y=x^2} \atop {x=2}} \right. \\\left \{ {{y=(-1)^2} \atop {x=-1}} \right. \vee \left \{ {{y=2^2} \atop {x=2}} \right. \\\left \{ {{y=1} \atop {x=-1}} \right. \vee \left \{ {{y=4} \atop {x=2}} \right.[/tex]