Pamiętajmy, że wzór na obwód koła to:
[tex]l = 2\pi r[/tex]
gdzie:
r - promień koła
Promień to połowa średnicy (d), więc:
[tex]r = \frac{1}{2} \ d \rightarrow d = 2r[/tex]
Dane z zadania:
[tex]r = 12\ cm \\\\d = 2r = 2 \cdot 12 \ cm =24\ cm \\\\[/tex]
[tex]l = 2\pi r = 2 \pi \cdot 12\ cm = 24\pi\ cm[/tex]
Obwód ma być 3 razy większy, czyli:
[tex]l_1 = 3\cdot l = 3 \cdot 24\pi\ cm = 72\pi \ cm \\\\[/tex]
Obliczamy ile musiałby wynieść wtedy promień:
[tex]l_2 = 2\pi r_1 \\\\2\pi r_1 = 72\pi\ cm \ | : 2\pi \\\\r_1 = 36\ cm[/tex]
Obliczamy średnice:
[tex]d_1 = 2r_1 = 2 \cdot 36\ cm = 72\ cm[/tex]
[tex]\Delta d = d_1 - d = 72\ cm - 24\ cm = 48\ cm[/tex]
Wniosek: Należałoby zwiększyć średnicę o 48 cm aby obwód koła zwiększył się trzykrotnie.
#SPJ2