Odpowiedź :
Odpowiedź:
430
[tex]I = 2700 kg m^2\\T = \frac{1}{50}s\\f = 1800s\\[/tex]
Dla spójności symboli z ogólnymi definicjami f nazwijmy t.
[tex]t = 1800s\\f = \frac{1}{T} = 50 Hz\\\omega = 2 \pi f\\\\M = I \epsilon \\\omega(t) = 0 = \omega_0 - \epsilon t\\\epsilon = \frac{\omega_0}{t}\\M = \frac{I \omega_0}{t} = \frac{I 2 \pi f}{t} = \frac{2700kg*m^2 * 2 * \pi * 50Hz}{1800s} = 471,238 Nm[/tex]
[tex]\alpha(t) = \alpha_0 + \omega_0 t - \frac{\epsilon t^2}{2} \\\alpha_0 = 0 \\ \omega_0 = 2 \pi f}\\\epsilon = \frac{\omega_0}{t} = \frac{2 \pi f}{t}\\\alpha(t) = 2 \pi f t - \pi f t = \pi f t = 1800 * 50 \pi = 90 000 \pi\\n = \frac{\alpha(t)}{2 \pi} = 45000 obr[/tex]
452
[tex]I_t = 1920kgm^2\\m_{cz} = 60kg\\n = \frac {3}{2}\\ \omega_1 = n\omega_2\\\\I_t n\omega_1 = I \omega_2 = (I_t + I_{cz}) \omega_1\\nI_t = I_t + I_{cz}\\I_{cz} = nI_t - I_t = mR^2\\R = \sqrt{ \frac{I_t(n-1)}{m} } = \sqrt{ \frac{I_t}{2m} } = 4m[/tex]
Wyjaśnienie: