Rozwiązanie:
[tex]$ \lim_{x \to -\infty} \frac{(x+1)^{2}(8x-1)}{(2x-5)^{2}(5-2x)} = \lim_{x \to -\infty}\frac{x^{2}(1+\frac{1}{x})^{2} \cdot x(8-\frac{1}{x} ) }{x^{2}(2-\frac{5}{x} )^{2} \cdot x(\frac{5}{x} -2)}= \lim_{x \to -\infty} \frac{x^{3}(1+\frac{1}{x})^{2}(8-\frac{1}{x} ) }{x^{3}(2-\frac{5}{x} )^{2}(\frac{5}{x} -2)} =[/tex][tex]$=\frac{8}{-8}=-1[/tex]