wyznacz ze wzoru k:
[tex]\sqrt[5]{(z+k^{2} )^{5} } =2-\frac{c}{7}[/tex]


Odpowiedź :

[tex]\sqrt[5]{(z + k^2)^5}[/tex] = z + k²

z + k² = 2 - [tex]\frac{c}{7}[/tex]   | - z

k² = 2 - [tex]\frac{c}{7}[/tex] - z    |√

k = [tex]\sqrt{2 - \frac{c}{7} } - z[/tex]

[tex]\sqrt[5]{(z+k^{2})^{5}} = 2-\frac{c}{7}\\\\z+k^{2} =2-\frac{c}{7}\\\\k^{2} = 2-z-\frac{c}{7} \ \ |\sqrt{}\\\\k = \sqrt{2-z-\frac{c}{7}}}[/tex]