Odpowiedź :
Odpowiedź:
równanie 1 i 4 to równania niezupełne, nie trzeba liczyć delty
25x²-81=0
(5x+9)(5x-9)=0
5x+9=0 5x-9=0
x=-9/5 lub x= 9/5
masz wzór a²-b²=(a+b)(a-b), u Ciebie a²=25x², czyli a= 5x, b²= 81, czyli b= 9
2x²+5x=0 x przed nawias
x(2x+5)=0
x=0 lub 2x+5=0 x1=0 x2=-5/2
x²+2x-3=0 a=1 b=2 c=-3 Δ=b²-4ac= 64-60=4 √Δ=2
x1=(-b-√Δ)/2a= ( 8-2) 2=3 x2=(-b+√Δ)/2a=(8+2)/2=5
5x²+2x-3=0 Δ= 4+ 60=64 √Δ=8 x1=(-2-8)/10=-1
x2=(-2+8)/10= 3/5
x²-7x+12=0 Δ=49-48=1 x1=(7-1)/2=3 x2=(7+1)/2=4
3x²-7x+2=0 Δ=49- 48=1 x1=(7-1)/6=1 x2=(7+1)/6=4/3
Szczegółowe wyjaśnienie:
Odpowiedź:
1.
25x² - 81 = 0
zastosowany wzór skróconego mnożenia
a² - b² =(a - b)(a + b)
25x² - 81 =0
(5x - 9)(5x + 9) = 0
5x - 9 = 0 ∨ 5x + 9 =0
5x = 9 ∨ 5x = - 9
x = 9/5 ∨ x = - 9/5
x = 1 4/5 ∨ x = - 1 4/5
2.
x² - 8x + 15 =0
a = 1 , b = - 8 , c = 15
Δ = b² - 4ac = (- 8)² - 4 * 1 * 15 = 64 - 60 = 4
√Δ = √4 = 2
x₁ = ( - b - √Δ)/2a = (8 - 2)/2= 6/2 = 3
x₂ = (- b + √Δ)/2a = (8 + 2)/2 = 10/2 = 5
3.
5x² + 2x - 3 = 0
a = 5, b = 2 , c = - 3
Δ = b² - 4ac = 2² - 4 * 5 * ( - 3) =4 + 60 = 64
√Δ = √64 = 8
x₁ = ( - b - √Δ)/2a = (- 2 - 8)/10 = - 10/10 = - 1
x₂ = (- b + √Δ)/2a = ( - 2 + 8)/10 = 6/10 = 3/5
1.
2x² + 5x = 0
x(2x + 5) = 0
x = 0 ∨ 2x + 5 = 0
x = 0 ∨ 2x = - 5
x =0 ∨ x = - 5/2 = - 2 1/2
2.
x² - 7x + 12 = 0
a = 1 , b = - 7 , c = 12
Δ = b² - 4ac = (- 7)² - 4 * 1 * 12 = 49 - 48 = 1
√Δ = √1 = 1
x₁ = ( - b - √Δ)/2a = (7 - 1)/2 = 6/2 = 3
x₂ = (- b + √Δ)/2a = (7 + 1)/2 = 8/2 = 4
3.
3x² - 7x + 2 = 0
a = 3 , b = - 7 , c = 2
Δ = b² - 4ac = (- 7)² - 4 * 3 * 2 = 49 - 24 = 25
√Δ = √25 = 5
x₁ = ( - b - √Δ)/2a = (7 - 5)/6 = 2/6 = 1/3
x₂ = (- b + √Δ)/2a = (7 + 5)/6 = 12/6 = 2