Odpowiedź:
zad 1
a)
√a = 8 | ² Podnosimy równanie obustronnie do potęgi drugiej
(√a)² = 8²
a = 64
b)
√b = 6
(√b)² = 6²
b = 36
c)
√(c - 2) = 10
[√(c - 2)]² = 10²
c - 2 = 100
c = 100 + 2 = 102
d)
√4y = 0,108
(√4y)² = 0,108²
4y = 0,011664
y = 0,0011664 : 4 = 0,002916
e)
√e = 3/7
(√e)² = (3/7)²
e = 9/49
f)
∛f = - 3
(∛f)³ = (- 3)³
f = - 27
g)
∛(z - 2) = 5
[(∛z - 2)]³ = 5³
z - 2 = 125
z = 125 + 2 = 127
zad 2
a)
√64 - 4 = 8 - 4 = 4
b)
∛1000 - 9 = 10 - 9 = 1
c)
4 - √(4/81) = 4 - 2/9 = 3 9/9 - 2/9 = 3 7/9
d)
∛(- 27)/9 = - 3/9 = - 1/3
e)
6/√169 + 1 = 6/13 + 1 = 1 6/13
f)
√36 - 2 = 6 - 2 = 4
g)
√36 - ∛125 = 6 - 5 = 1
h)
√169 - √144 + √121 = 13 - 12 + 11 = 12