Odpowiedź :
5.
[tex]log_{4}(2x-1)\\\\2x-1 > 0\\\\2x > 1 \ \ /:2\\\\x > \frac{1}{2} \\\\Odp. \ B)[/tex]
6.
[tex]log_{3}(\frac{1}{27}) = log_{3}3^{-3} = -3\\\\Odp. \ A)[/tex]
7.
[tex]log_{3}27 - log_{3}1 = log_{3}\frac{27}{1} = log_{3}27 = log_{3}3^{3} = 3\\\\Odp. \ D)[/tex]
8.
[tex]log100-log_{2}8 = log10^{2}-log_{2}2^{3} = 2-3 = -1\\\\Odp. \ B)[/tex]
9.
[tex]log_{2}20-log_{2}5 = log_{2}\frac{20}{5} = log_{2}4 = log_{2}2^{2} = 2\\\\Odp. \ B)[/tex]