Rozwiązanie:
Niech [tex]3x[/tex] i [tex]4x[/tex] będą przyprostokątnymi. Wówczas przeciwprostokątna ma długość [tex]5x[/tex] (z tw. Pitagorasa). Promień okręgu opisanego na trójkącie prostokątnym jest równy połowie przeciwprostokątnej, więc ma długość [tex]2,5x[/tex]. Korzystamy ze wzoru na pole trójkąta wpisanego w okrąg:
[tex]P=\frac{abc}{4R}=\frac{4x*3x*5x}{10x} =216\\6x^{2}=216\\x^{2}=36\\x=6[/tex]
Zatem:
[tex]R=2,5*6=15[/tex]
Odpowiedź: [tex]A[/tex].