Odpowiedź :
log5 4=a i log5 3=b, oblicz log25 12
log25 12 = log5 12/log5 25 = log5 (4*3)/2 = (log5 4 + log5 3)/2 = (a + b)/2
log3 4=a i log3 5=b, oblicz log27 0,8
log27 0,8 = log3 0,8/log3 27 = log3 (4/5)/3 = (log3 4 - log3 5)/3 = (a - b)/3
log14 2=a i log14 5 =b, oblicz log7 50
log14 2 = log7 2/log7 14 = log7 2/(log7 2 + 1) = a
log7 2 = a/(1 - a)
log14 5 = log7 5/log7 14 = log7 5/(log7 2 + 1) = log7 5/(a/(1 - a) + 1) = log7 5/[1/(1 - a)] = b
log7 5 = b/(1 - a)
log7 50 = log7 50 = 2log7 5 + log7 2 = a/(1 - a) + 2b/(1 - a) = (a + 2b/(1 - a)
log3 20=a i log3 15=b, oblicz log2 360
log3 20 = 2log3 2 + log3 5 = a
log3 15 = log3 3 + log3 5 = 1 + log3 5 = b
log3 5 = b - 1
log3 2 = (a - b + 1)/2
log2 360 = log3 360/log3 2 = log3 (20*9*2)/log3 2 = (log3 20 + log3 9 + log3 2)/log3 2 = [a + 2 + (a - b + 1)/2]/[(a - b + 1)/2] = [(3a - b + 5)/2]/[(a - b + 1)/2] = (3a - b + 5)/(a - b + 1)
log25 12 = log5 12/log5 25 = log5 (4*3)/2 = (log5 4 + log5 3)/2 = (a + b)/2
log3 4=a i log3 5=b, oblicz log27 0,8
log27 0,8 = log3 0,8/log3 27 = log3 (4/5)/3 = (log3 4 - log3 5)/3 = (a - b)/3
log14 2=a i log14 5 =b, oblicz log7 50
log14 2 = log7 2/log7 14 = log7 2/(log7 2 + 1) = a
log7 2 = a/(1 - a)
log14 5 = log7 5/log7 14 = log7 5/(log7 2 + 1) = log7 5/(a/(1 - a) + 1) = log7 5/[1/(1 - a)] = b
log7 5 = b/(1 - a)
log7 50 = log7 50 = 2log7 5 + log7 2 = a/(1 - a) + 2b/(1 - a) = (a + 2b/(1 - a)
log3 20=a i log3 15=b, oblicz log2 360
log3 20 = 2log3 2 + log3 5 = a
log3 15 = log3 3 + log3 5 = 1 + log3 5 = b
log3 5 = b - 1
log3 2 = (a - b + 1)/2
log2 360 = log3 360/log3 2 = log3 (20*9*2)/log3 2 = (log3 20 + log3 9 + log3 2)/log3 2 = [a + 2 + (a - b + 1)/2]/[(a - b + 1)/2] = [(3a - b + 5)/2]/[(a - b + 1)/2] = (3a - b + 5)/(a - b + 1)
Odpowiedź:
[tex]a)\\\dfrac{1}{2}(a+b)\\\\b)\\\dfrac{1}{3}(a-b)\\\\c)\\\dfrac{a+2b}{1-a}\\\\d)\\\dfrac{3a-b+5}{a-b+1}[/tex]
Szczegółowe wyjaśnienie:
Przypomnijmy, że logarytmem przy podstawie [tex]a\in (0,1) \cup (1,\infty)[/tex] z liczby [tex]b \in (0,\infty)[/tex] nazywamy taką liczbę rzeczywistą c, dla której zachodzi równość [tex]a^c=b.[/tex]
Możemy zapisać ten fakt symbolicznie: [tex]\log_{a}b=c \Leftrightarrow a^c=b.[/tex]
Przypomnijmy również, pewne użyteczne własności logarytmów:
[tex]\log_{a}b+\log_{a}c=\log_{a}(b \cdot c)\\\log_{a}b-\log_{a}c=\log_{a](b : c)\\k\cdot \log_{a}b=\log_{a} b^k\\a^{\log_{a}b}=b\\\log_{a}b\cdot \log_{b}c=\log_{a}c[/tex]
dla [tex]a,b\in (0,1) \cup (1,\infty),\, c \in (0,\infty).[/tex]
Przypomnijmy również, że dla [tex]\alpha\not=0[/tex] zachodzi równość
[tex]\log_{a^{\alpha}}b=\dfrac{1}{\alpha}\log_{a}b.[/tex]
Zgodnie z powyższym:
[tex]a)\\a=\log_{5}4\\b=\log_{5}3\\\log_{25}12=\log_{5^{2}}(4\cdot 3)=\dfrac{1}{2}\log_{5}(4\cdot 3)=\dfrac{1}{2}\cdot \log_{5}4+\dfrac{1}{2}\log_{5}3=\dfrac{1}{2}a+\dfrac{1}{2}b=\dfrac{1}{2}\cdot (a+b)\\\\b)\\a=\log_{3}4\\b=\log_{3}5\\\log_{27}0,8=\log_{3^{3}}\dfrac{4}{5}=\dfrac{1}{3}\log_{3}(4:5)=\dfrac{1}{3}\cdot \log_{3}4-\dfrac{1}{3}\log_{3}5=\dfrac{1}{3}a-\dfrac{1}{3}b=\dfrac{1}{3}(a-b)[/tex]
Teraz nieco poprzekształcajmy nasze dane aby łatwiej dojść do szukanego wyrażenia:
[tex]c)\\a=\log_{14}2\\b=\log_{14}5\\\log_{7}50=\dfrac{\log_{14}50}{\log_{14}7}=\dfrac{\log_{14}(2\cdot 5^{2})}{\log_{14}7}=\dfrac{\log_{14}2+2\log_{14}5}{\log_{14}7}=\dfrac{a+2b}{\log_{14}7}=\dfrac{a+2b}{\log_{14}(14:2)}=\dfrac{a+2b}{1-\log_{14}2}=\dfrac{a+2b}{1-a}[/tex]
[tex]d)\\a=\log_{3}20\\b=\log_{3}15\\a=\log_{3}(2^{2}\cdot 5)=2\log_{3}2+\log_{3}5\\b=\log_{3}(3\cdot 5)=1+\log_{3}5\\\log_{3}5=b-1\\\log_{2}360=\log_{2}(2^{3}\cdot 3^{2}\cdot 5)=3+2\log_{2}3+\log_{2}5\\\log_{3}2=\dfrac{a-b+1}{2}[/tex]
[tex]\\\log_{2}360=\dfrac{\log_{3}360}{\log_{3}2}=\dfrac{\log_{3}(2^{3}\cdot 3^{2}\cdot 5)}{\log_{3}2}=\dfrac{3\log_{3}2+2\cdot 1+\log_{3}5}{\dfrac{a-b+1}{2}}=\\\\=\dfrac{2\cdot \left(3\cdot \dfrac{a-b+1}{2}+2+b-1\right)}{a-b+1}=\dfrac{3a-3b+3+2b+2}{a-b+1}=\dfrac{3a-b+5}{a-b+1}[/tex]
szkoła średnia
Dział Logarytmy i ich własności