a)
[tex]2 \frac{1}{16} - 5 \frac{5}{6} = [/tex]
b)
[tex]11 \frac{1}{9} \times 1 \frac{4}{50} = [/tex]
c)
[tex] \frac{62}{15} \div \frac{93}{25} = [/tex]
d)
[tex]1 \frac{2}{5} \div 14 = [/tex]
e)

[tex]2 \frac{1}{2} \div 3 \frac{3}{4} = [/tex]
f)
[tex]3 \frac{2}{15} - (1 \frac{3}{10} + 4 \frac{3}{20} ) = [/tex]
g)
[tex] - 1 \frac{1}{8} \div ( - 1 \frac{1}{5} \times \frac{15}{16} ) = [/tex]
h)
[tex](1 \frac{1}{3} - 1 \frac{2}{9} ) \times (1 \frac{4}{5} + \frac{9}{10} ) = [/tex]
i)
[tex](3 \frac{5}{7} - 2 \frac{11}{21} ) \div (3 \frac{4}{7} - 2 \frac{1}{2} ) = [/tex]
j)
[tex](1 \frac{1}{6} + 2 \frac{5}{8} - \frac{1}{3} ) \div \frac{14}{27} = [/tex]





Odpowiedź :

Ułamki zwykłe

Aby dodać lub odjąć od siebie ułamki zwykłe należy sprowadzić je do wspólnego mianownika odpowiednio rozszerzając ułamki.

[tex]\huge\boxed{\frac{a}b\pm\frac{c}d=\frac{a*\frac{NWW(b,d)}{b}}{NWW(b, d)}\pm\frac{c*\frac{NWW(b, d)}d}{NWW(b,d)}}[/tex]

b, d ≠ 0

Aby pomnożyć lub podzielić ułamki mieszane, należy zamienić je na ułamki niewłaściwe.

[tex]\huge\boxed{a\frac{b}c*\frac{d}e=\frac{c*a+b}c*\frac{d}e=\frac{d(ca+b)}{ce}}[/tex]

c, e ≠0

Dzielenie ułamków zwykłych to nic innego, jak mnożenie ułamka przez odwrotność drugiego ułamka.

[tex]\huge\boxed{\frac{a}b:\frac{c}d=\frac{a}b*\frac{d}c}[/tex]

b, c, d ≠0

Kolejność wykonywania działań:

  • Działania w nawiasach
  • Dodawanie i odejmowanie
  • Mnożenie i dzielenie

Rozwiązanie:

a)

[tex]2\dfrac1{16}-5\dfrac{5}6=2\dfrac{3}{48}-5\dfrac{40}{48}=\dfrac{99}{48}-\dfrac{280}{48}=-\dfrac{181}{48}=-3\dfrac{37}{48}[/tex]

b)

[tex]11\dfrac19*1\dfrac4{50}=\dfrac{100\!\!\!\!\!\!\!\diagup\:^2}{9\!\!\!\!\diagup_1}*\dfrac{54\!\!\!\!\!\diagup^6}{50\!\!\!\!\diagup_1}=\dfrac{12}1=12[/tex]

c)

[tex]\dfrac{62}{15}:\dfrac{93}{25}=\dfrac{62\!\!\!\!\!\diagup^2}{15\!\!\!\!\!\diagup_3}*\dfrac{25\!\!\!\!\!\diagup^5}{93\!\!\!\!\!\diagup_3}=\dfrac{2*5}{3*3}=\dfrac{10}9=1\dfrac19[/tex]

d)

[tex]1\dfrac25:15=\dfrac75*\dfrac1{15}=\dfrac{7}{75}[/tex]

e)

[tex]2\dfrac12:3\dfrac34=\dfrac52:\dfrac{15}4=\dfrac{5\!\!\!\!\diagup^1}{2\!\!\!\!\diagup_1}*\dfrac{4\!\!\!\!\diagup^1}{15\!\!\!\!\!\diagup_3}=\dfrac13[/tex]

f)

[tex]3\dfrac2{15}-\left(1\dfrac3{10}+4\dfrac3{20}\right)=3\dfrac2{15}-\left(1\dfrac6{20}+4\dfrac3{20}\right)=3\dfrac2{15}-5\dfrac{9}{20}=\dfrac{47}{15}-\dfrac{109}{20}=\\\\=\dfrac{188}{60}-\dfrac{327}{60}=-\dfrac{139}{60}=-2\dfrac{19}{60}[/tex]

g)

[tex]-1\dfrac18:\left(-1\dfrac15*\dfrac{15}{16}\right)=-1\dfrac18:\left(-\dfrac{6\!\!\!\!\diagup^3}{5\!\!\!\!\diagup_1}*\dfrac{15\!\!\!\!\!\diagup^3}{16\!\!\!\!\!\diagup_8}\right)=-\dfrac98:\left(-\dfrac98\right)=-\dfrac98*\left(-\dfrac89\right)=1[/tex]

h)

[tex]\left(1\dfrac13-1\dfrac29\right)*\left(1\dfrac45+\dfrac9{10}\right)=\left(1\dfrac{3}{9}-1\dfrac29\right)*\left(1\dfrac{8}{10}+\dfrac9{10}\right)=\dfrac19*1\dfrac{17}{10}=\dfrac1{9\!\!\!\!\diagup_1}*\dfrac{27\!\!\!\!\!\diagup^3}{10}=\\\\=\dfrac3{10}[/tex]

i)

[tex]\left(3\dfrac57-2\dfrac{11}{21}\right):\left(3\dfrac47-2\dfrac12\right)=\left(3\dfrac{15}{21}-2\dfrac{11}{21}\right):\left(3\dfrac{8}{14}-2\dfrac{7}{14}\right)=1\dfrac{4}{21}:1\dfrac{1}{14}=\\\\=\dfrac{25}{21}:\dfrac{15}{14}=\dfrac{25\!\!\!\!\!\diagup^5}{21\!\!\!\!\!\diagup_3}*\dfrac{14\!\!\!\!\!\diagup^2}{15\!\!\!\!\!\diagup_3}=\dfrac{10}9=1\dfrac19[/tex]

j)

[tex]\left(1\dfrac16+2\dfrac58-\dfrac13\right):\dfrac{14}{27}=\left(1\dfrac{4}{24}+2\dfrac{15}{24}-\dfrac{8}{24}\right)*\dfrac{27}{14}=\left(3\dfrac{19}{24}-\dfrac8{24}\right)*\dfrac{27}{14}=\\\\=3\dfrac{11}{24}*\dfrac{27}{14}=\dfrac{83}{24\!\!\!\!\!\diagup_8}*\dfrac{27\!\!\!\!\!\diagup^9}{14}=\dfrac{747}{112}=6\dfrac{75}{112}[/tex]