Obliczamy wspolrzedne wektora AB
[tex]\overrightarrow{AB}=[60+20; 60-20]\\\\\bold{\overrightarrow{AB}=[80; 40]}[/tex]
Wspolrzedne punktu P, to [tex]P(x_p; y_p)[/tex]
[tex]4\overrightarrow{PB}=\overrightarrow{AB}\\\\\overrightarrow{PB}=[60-x_p; 60-y_p]\\4[60-x_p; 60-y_p]=[80; 40]\\4(60-x_p)=80 /:4\\60-x_p=20 /-60\\-x_p=-40\\x_p=40\\\\4(60-y_p)=40 /:4\\60-y_p=10 /-60\\-y_p=-50\\y_p=50\\\\\underline{P(40, 50)}[/tex]
Odp. Punkt P ma wspolrzedne P(40, 50)