[tex]\iint\limits_P {\frac{x^2}{y^2}} dxdy=\int\limits^4_2\left(\int\limits^2_1 {\frac{x^2}{y^2}} dx\right)dy=\int\limits^4_2\left[ {\frac{\frac{1}{3}x^3}{y^2}} \right]^2_1dy=\int\limits^4_2\left[ {\frac{x^3}{3y^2}} \right]^2_1dy=\int\limits^4_2 {\left(\frac{8}{3y^2}-\frac{1}{3y^2}\right)} dy=\\=\int\limits^4_2 {\frac{7}{3y^2}} dy=\frac{7}{3}\int\limits^4_2 {\frac{1}{y^2}} dy=\frac{7}{3}\left[-\frac{1}{y}} \right]^4_2=\frac{7}{3}(-\frac{1}{4}+\frac{1}{2})=\frac{7}{3}*\frac{1}{4}=\frac{7}{12}[/tex]