W trójkącie różnobocznym naprzeciw najkrótszego boku leży kąt o najmniejszej mierze.
[tex]a = 2\sqrt{3} \ - \ krotsza \ przyprostokatna\\b = \sqrt{13} \ - \ dluzsza \ przyprostokatna\\\\Z \ tw. \ Pitagorasa \ liczymy \ przeciwprostokatna:\\\\a^{2}+b^{2} = c^{2}\\\\(2\sqrt{3})^{2} + (\sqrt{13})^{2} = c^{2}\\\\4\cdot3 + 13 = c^{2}\\\\12+13 = c^{2}\\\\c^{2} = 25\\\\c = \sqrt{25}\\\\\underline{c = 5}[/tex]
[tex]sin\alpha = \frac{a}{c} = \frac{2\sqrt{3}}{5}\\\\cos\alpha = \frac{b}{c} = \frac{\sqrt{13}}{5}\\\\tg\alpha = \frac{a}{b} = \frac{2\sqrt{3}}{\sqrt{13}} = \frac{2\sqrt{3}}{\sqrt{13}}\cdot\frac{\sqrt{13}}{\sqrt{13}} = \frac{2\sqrt{3\cdot13}}{\sqrt{13}^{2}} =\frac{2\sqrt{39}}{13}\\\\ctg\alpha = \frac{b}{a} =\frac{\sqrt{13}}{2\sqrt{3}} =\frac{\sqrt{13}}{2\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} =\frac{\sqrt{13\cdot3}}{2\cdot3}=\frac{\sqrt{39}}{6}[/tex]