3. Rozwiąż:
a) x³ +5x²-3x-15=0
b)(x-6)(x+3)(x-1)>0​


Odpowiedź :

a)

Skorzystamy z metody grupowania wyrazów.

[tex]x^3+5x^2-3x-15=0\\x^2(x+5)-3(x+5)=0\\(x+5)(x^2-3)=0\\(x+5)(x-\sqrt3)(x+\sqrt3)=0\\x+5=0\vee x-\sqrt3=0\vee x+\sqrt3=0\\x=-5\vee x=\sqrt3\vee x=-\sqrt3\\x\in\{-5,-\sqrt3,\sqrt3\}[/tex]

b)

[tex](x-6)(x+3)(x-1) > 0\\x-6=0\qquad x+3=0\qquad x-1=0\\x=6\qquad x=-3\qquad x=1\\x\in(-3,1)\cup(6,+\infty)[/tex]

Wykres pomocniczy w załączniku.

Zobacz obrazek Adrianpapis