Odpowiedź :
[tex](\frac{16}{50})^5 \cdot (\frac{5}{4})^4 = \frac{2^k}{5^s}\\\\(\frac{2^4}{25\cdot2})^5 \cdot (\frac{5}{2^2})^4 = \frac{2^k}{5^s}\\\\(\frac{2^4}{5^2\cdot2})^5 \cdot (\frac{2^2}{5})^{-4} = \frac{2^k}{5^s}\\\\\frac{2^{20}}{5^{10}\cdot2^5} \cdot \frac{2^{-8}}{5^{-4}} = \frac{2^k}{5^s}\\\\\frac{2^{15}}{5^{10}} \cdot \frac{2^{-8}}{5^{-4}} = \frac{2^k}{5^s}\\\\\frac{2^{7}}{5^{6}} = \frac{2^k}{5^s}\\\\k=7,\ s=6[/tex]