Odpowiedź :
[tex]a) \\\sqrt3(\sqrt2-1)=\sqrt6-\sqrt3\\\\b) \\\sqrt5(2+\sqrt5)-(3-\sqrt5)=2\sqrt5+5-3+\sqrt5=3\sqrt5+2\\\\c)\\(\sqrt7-\sqrt3)(4+\sqrt3)=4\sqrt7+\sqrt{21}-4\sqrt3-3\\\\d)\\\sqrt{5^{10}}=\sqrt{(5^5)^2}=5^5=3125\\\\e)\\\sqrt[3]{9^{12}}=\sqrt[3]{(9^4)^3}=9^4=6561[/tex]
[tex]f)\\\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8[/tex]
Drugi sposob: wzor skroconego mnozenia na roznice kwadratow
[tex]\sqrt{10^2-6^2}=\sqrt{(10-6)(10+6)}=\sqrt{4*16}=2*4=8[/tex]