Oblicz długości odcinków oznaczonych literami:​

Oblicz Długości Odcinków Oznaczonych Literami class=

Odpowiedź :

Odpowiedź:

a)

[tex] {5}^{2} + {12}^{2} = {x}^{2} \\ 25 + 144 = {x}^{2} \\ x = \sqrt{169} \\ \times = 13[/tex]

b)

[tex] {y}^{2} + 6^{2} = {10}^{2} \\ {y}^{2} = {10}^{2} - {6}^{2} \\ {y}^{2} = 100 - 36 \\ y = \sqrt{64} \\ y = 8[/tex]

c)

[tex] {4}^{2} + {x}^{2} = {(3 \sqrt{2}) }^{2} \\ {x}^{2} = \sqrt{18}^{2} - {4}^{2} \\ {x}^{2} = 18 - 16 \\ x = \sqrt{2} [/tex]

d)

[tex] {(3 \sqrt{3} )}^{2} + {(2 \sqrt{5}) }^{2} = b^{2} \\ {( \sqrt{27}) }^{2} + {( \sqrt{20}) }^{2} = b^{2} \\ b = \sqrt{47} [/tex]

e)

[tex]( { \sqrt{11} )}^{2} + e^{2} = {5}^{2} \\ {e}^{2} = {5}^{2} - (\sqrt{11} )^{2} \\ {e}^{2} = 25 - 11 \\ e = \sqrt{14} [/tex]

f)

[tex] {1}^{2} + {x}^{2} = {3}^{2} \\ {x}^{2} = {3}^{2} - {1}^{2} \\ {x}^{2} = 9 - 1 \\ x = \sqrt{8} = 2 \sqrt{2} [/tex]