Szczegółowe wyjaśnienie:
x - liczba monet 5-groszowych
y - liczba monet 10-groszowych
Zapiszmy zatem to, co wiemy, zacznijmy od prostszej rzeczy.
Wiemy, że Patrycja wrzuciła razem 20 monet do skarbonki, zatem:
[tex]x+y=20[/tex]
Wiemy również, że uzbierała łącznie 1,25zł co można zapisać jako:
[tex]x*0,05 +y*0,1 = 1,25[/tex]
Z tych równań układamy układ równań i go rozwiązujemy:
[tex]\left \{ {{x+y=20} \atop {x*0,05+y*0,1=1,25}} \right. \\\left \{ {{x+y=20} \atop {x*0,05+y*0,1=1,25}/*(-10)} \right.\\ \left \{ {{x+y=20} \atop {-0,5x-y=-12,5}} \right. \\[/tex]
Dodajemy do siebie oba wyrażenia w układzie równań i otrzymujemy:
[tex]0,5x = 7,5 / *2\\x = 15[/tex]
Podstawiamy wynik pod równanie opisujące liczbę monet Patrycji:
[tex]x + y=20\\15 + y = 20\\y = 5\\\\x=15\\y=5[/tex]