Oblicz równość : ([tex](\sqrt{2} -x\sqrt{2} )^{2} =(2-\sqrt{2} )^{2}[/tex]

Odpowiedź :

Odpowiedź:

[tex] = ( \sqrt{2} - \sqrt{2}x) {}^{2} = 4 - 4 \sqrt{2} + 2 \\ ( \sqrt{2} - \sqrt{2x}) {}^{2} = 6 - 4 \sqrt{2} \\ \sqrt{2} - \sqrt{2} x = (2 - \sqrt{2}) \\ \sqrt{2} - \sqrt{2}x = - (2 - \sqrt{2}) \\ \sqrt{2} - \sqrt{2x} = 2 - \sqrt{2} \\ x = \sqrt{2} \\ x = - \sqrt{2} + 2 \\ x1 = - \sqrt{2} + 2....x2 = \sqrt{2} [/tex]