Rozwiąż:

(2x - 3)/(x + 1) = x - (5/3)


Odpowiedź :

Odpowiedź:

[tex]\frac{(2x-3)}{(x+1)} =x-(\frac{5}{3})\\ \\\frac{2x-3}{x+1} =x-\frac{5}{3}\\\\x\neq -1\\\\\frac{2x-3}{x+1} -x+\frac{5}{3}=0\\\\\frac{3(2x-3)-3x*(x+1)+5(x+1)}{3(x+1)}=0\\\\\frac{6x-9-3x^{2}-3x+5x+5 }{3(x+1)} =0\\\\\frac{8x-4-3x^{2} }{3(x+1)} =0\\\\8x-4-3x^{2} =0\\\\-3x^{2} +8x-4=0\\\\3x^{2} -8x+4=0\\\\x=\frac{-(-8)+\sqrt{(-8)^{2}-4*3*4 } }{2*3}\\\\x=\frac{8+\sqrt{16-48} }{6}\\\\x=\frac{8+\sqrt{16} }{6} \\\\x=\frac{8+4}{6} \\\\x=\frac{8-4}{6} \\\\x=2\\\\x=\frac{2}{3} \\\\[/tex]

[tex]x\neq 1\\\\x_{1}= \frac{2}{3} \\\\x_{2} =2[/tex]

[tex]\dfrac{2x-3}{x+1}=x-\dfrac{5}{3}\Big|\cdot 3(x+1)\qquad(x\not=-1)\\\\3(2x-3)=3(x+1)x-5(x+1)\\6x-9=3x^2+3x-5x-5\\3x^2-8x+4=0\\3x^2-6x-2x+4=0\\3x(x-2)-2(x-2)=0\\(3x-2)(x-2)=0\\x=\dfrac{2}{3} \vee x=2[/tex]