Odpowiedź :
Z definicji logarytmu:
[tex]log_{a}b = c \ \ to \ \ a^{c} = b[/tex]
[tex]a) \ P(27,3)\\\\log_{a} 27 = 3\\\\a^{3} = 27\\\\a^{3} = 3^{3}\\\\\boxed{a = 3}[/tex]
[tex]b) \ P(625,4)\\\\log_{a}625 = 4\\\\a^{4} = 625\\\\a^{4} = 5^{4}\\\\\boxed{a = 5}[/tex]
[tex]c) \ P(32,-5)\\\\log_{a}32 = -5\\\\a^{-5} = 32\\\\a^{-5} = (\frac{1}{2})^{-5}\\\\\boxed{a = \frac{1}{2}}[/tex]
[tex]d) \ P(4,4)\\\\log_{a}4 = 4\\\\a^{4} = 4\\\\\boxed{a = \sqrt[4]{4}}[/tex]