Odpowiedź i szczegółowe wyjaśnienie:
[tex]W(x)=(2x-3)^3-(3x-1)^2-(4x-5)(4x+5)\\\\W(x)=(2x)^3-3\cdot(2x)^2\cdot3+3\cdot2x\cdot3^2-3^3-(9x^2-6x+1)-(16x^2-25)\\\\W(x)=8x^3-36x^2+54x-27-9x^2+6x-1-16x^2+25\\\\W(x)=9x^3-61x^2+60x-3[/tex]
[tex]Dla\ x=-\sqrt3\\\\W(-\sqrt3)=8(-\sqrt3)^3-61\cdot(-\sqrt3)^2+60\cdot(-\sqrt3)-3\\\\W(-\sqrt3)=8\cdot(-3\sqrt3)-61\cdot3-60\sqrt3-3\\\\W(-\sqrt3)=-24\sqrt3-183-60\sqrt3-3\\\\W(-\sqrt3)=-84\sqrt3-186\\\\W(-\sqrt3)=-6(14\sqrt3+31)[/tex]