Odpowiedź :
Odpowiedź:
[tex]5p-p^2=5\cdot2-2^2=10-4=6\\\\5a-a^2=\not5\cdot\frac{1}{\not5}-(\frac{1}{5})^2=1-\frac{1}{25}=\frac{25}{25}-\frac{1}{25}=\frac{24}{25}\\\\5c-c^2=5\cdot1-1^2=5-1=4\\\\5g-g^2=5\cdot\frac{1}{3}-(\frac{1}{3})^2=\frac{5}{3}-\frac{1}{9}=\frac{15}{9}-\frac{1}{9}=\frac{14}{9}=1\frac{5}{9}\\\\(a-\frac{1}{10}):3=(\frac{1}{5}-\frac{1}{10}):3=(\frac{2}{10}-\frac{1}{10}):3=\frac{1}{10}\cdot\frac{1}{3}=\frac{1}{30} [/tex]
[tex](p-\frac{1}{10}):2=(2-\frac{1}{10}):2=(\frac{20}{10}-\frac{1}{10}):2=\frac{19}{10}\cdot\frac{1}{2}=\frac{19}{20}\\\\(c-\frac{2}{6}):6=(1-\frac{2}{6}):6=(1-\frac{1}{3}):6=(\frac{3}{3}-\frac{1}{3}):6=\frac{\not2^1}{3}\cdot\frac{1}{\not6_{3}}=\frac{1}{9}\\\\(g-\frac{2}{6}):14=(\frac{1}{3}-\frac{2}{6}):14=(\frac{1}{3}-\frac{1}{3}):14=0:14=0 [/tex]