[tex]\displaystyle\\\binom{8}{3}\cdot\binom{6}{3}\cdot8\cdot7\cdot6=\dfrac{8!}{3!5!}\cdot\dfrac{6!}{3!3!}\cdot8\cdot7\cdot6=\dfrac{6\cdot7\cdot8}{2\cdot3}\cdot\dfrac{4\cdot5\cdot6}{2\cdot3}\cdot8\cdot7\cdot6=\\=7\cdot8\cdot4\cdot5\cdot8\cdot7\cdot6=376320[/tex]