Odpowiedź:
[tex]\huge\boxed{-1\dfrac{4}{7}}[/tex]
Szczegółowe wyjaśnienie:
[tex]\dfrac{a+2b}{a-2b}\\\\a=\dfrac{2}{3},\ b=\dfrac{3}{2}[/tex]
podstawiamy:
[tex]\dfrac{\frac{2}{3}+2\!\!\!\!\diagup\cdot\frac{3}{2\!\!\!\!\diagup}}{\frac{2}{3}-2\!\!\!\!\diagup\cdot\frac{3}{2\!\!\!\!\diagup}}=\dfrac{\frac{2}{3}+3}{\frac{2}{3}-3}=\dfrac{3\frac{2}{3}}{-2\frac{1}{3}}=3\dfrac{2}{3}:\left(-2\dfrac{1}{3}\right)=\dfrac{11}{3}:\left(-\dfrac{7}{3}\right)\\=\dfrac{11}{3\!\!\!\!\diagup}\cdot\left(-\dfrac{3\!\!\!\!\diagup}{7}\right)=-\dfrac{11}{7}=-1\dfrac{4}{7}[/tex]