7. Oblicz długości odcinków oznaczonych literami. ✨✨✨DAJE NAJ ✨✨✨
![7 Oblicz Długości Odcinków Oznaczonych Literami DAJE NAJ class=](https://pl-static.z-dn.net/files/dba/a3fbadb17193ca47584dc0293ab05554.jpg)
Korzystamy z Pitagorasa: [tex]a^{2}[/tex]+[tex]b^{2}[/tex]=[tex]c^{2}[/tex]
a) a=8
b=6
c=x
[tex]8^{2}[/tex] + [tex]6^{2}[/tex] = [tex]x^{2}[/tex]
64 + 36 = [tex]x^{2}[/tex]
100 = [tex]x^{2}[/tex] /[tex]\sqrt{}[/tex]
x = 10
b) a=y
b=15
c=17
[tex]y^{2} + 15^{2} = 17^{2}[/tex]
[tex]y^{2}[/tex] + 225 = 289
[tex]y^{2}[/tex] = 289-225
[tex]y^{2}[/tex] = 64 /[tex]\sqrt{}[/tex]
y = 8
c) a=z
b=2
c=6
[tex]z^{2} + 2^{2} = 6^{2}[/tex]
[tex]z^{2}[/tex] + 4 = 36
[tex]z^{2}[/tex] = 36 - 4
[tex]z^{2}[/tex] = 32 /[tex]\sqrt{}[/tex]
z= [tex]4\sqrt{2}[/tex]
d) a=a
b=4
c=[tex]3\sqrt{2}[/tex]
[tex]a^{2} + 4^{2} = (3\sqrt{2}) ^{2}[/tex]
[tex]a^{2}[/tex] + 16 = 18
[tex]a^{2}[/tex] = 2 /[tex]\sqrt{}[/tex]
a = [tex]\sqrt{2}[/tex]
e) a=[tex]3\sqrt{3}[/tex]
b=[tex]2\sqrt{5}[/tex]
c=b
[tex](3\sqrt{3})^{2} + (2\sqrt{5})^{2} = b^{2}[/tex]
27 + 20 = [tex]b^{2}[/tex]
47 = [tex]b^{2}[/tex] /[tex]\sqrt{}[/tex]
b = [tex]\sqrt{47}[/tex]
f) a=3
b=c
c=[tex]\sqrt{13}[/tex]
[tex]3^{2} + c^{2} = (\sqrt{13})^{2}[/tex]
9 + [tex]c^{2}[/tex] = 13
[tex]c^{2}[/tex] = 13-9
[tex]c^{2}[/tex] = 4 /[tex]\sqrt{}[/tex]
c = 2