Odpowiedź :
Szczegółowe wyjaśnienie:
[tex]a)\\3^6:3^2\cdot3^5=3^{6-2+5}=3^9\\\\\text{Wzory:}\\\\a^n:a^n=a^{n-m}\\\\a^n\cdot a^m=a^{n+m}[/tex]
[tex]b)\\(0,5^3)^4=0,5^{3\cdot4}=0,5^{12}\\\\\text{Wzor:}\\\\(a^n)^m=a^{n\cdot m}[/tex]
[tex]c)\\\dfrac{(7^4)^2\cdot7^4}{7^3}=\dfrac{7^{4\cdot2}\cdot7^4}{7^3}=\dfrac{7^8\cdot7^4}{7^3}=\dfrac{7^{8+4}}{7^3}=\dfrac{7^{12}}{7^3}=7^{12-3}=7^9\\\\\text{Wzory:}\\\\(a^n)^m=a^{n\cdot m}\\\\a^n\cdot a^m=a^{n+m}\\\\\dfrac{a^n}{a^m}=a^{n-m}[/tex]
Odpowiedź:
[tex]a) {3}^{6} \div {3}^{2} \times {3}^{5} = {3}^{6 - 2} \times {3}^{5} = {3}^{4 + 5 } = {3}^{9} [/tex]
[tex]b) { {(0.5}^{3}) }^{4} = {0.5}^{3 \times 4} = {0.5}^{12} [/tex]
[tex]c) \frac{{( {7}^{4}) }^{2} \times {7}^{4} }{ {7}^{3} } = \frac{ {7}^{4 \times 2 } \times {7}^{4} }{ {7}^{3} } = \frac{ {7}^{8 + 4} }{ {7}^{3} } = \frac{ {7}^{12} }{ {7}^{3} } = {7}^{12 - 3} = {7}^{9} [/tex]