[tex]a)~~\sqrt[3]{24} =\sqrt[3]{8\cdot 3} =\sqrt[3]{2^{3} \cdot 3} =2\sqrt[3]{3} \\\\b)~~\sqrt[3]{88} =\sqrt[3]{8\cdot 11} =\sqrt[3]{2^{3} \cdot 11} =2\sqrt[3]{11}\\\\c)~~\sqrt[3]{81} =\sqrt[3]{27\cdot 3} =\sqrt[3]{3^{3} \cdot 3} =3\sqrt[3]{3} \\\\d)~~\sqrt[3]{270} =\sqrt[3]{27\cdot 10} =\sqrt[3]{3^{3} \cdot 10}=3\sqrt[3]{10} \\\\e)~~\sqrt[3]{250} =\sqrt[3]{125\cdot 2} =\sqrt[3]{5^{3} \cdot 2} =5\sqrt[3]{2} \\\\f)~~\sqrt[3]{320} =\sqrt[3]{64\cdot 5 } =\sqrt[3]{4^{3} \cdot 5} =4\sqrt[3]{5}[/tex]
korzystam ze wzoru:
[tex]\sqrt[n]{x^{n} } =(x^{n} )^{\frac{1}{n} } =x^{n\cdot \frac{1}{n} } =x^{1} =x[/tex]