[tex]0,(3) = \frac{1}{3}\\0,(3) \in \mathbb{Q}[/tex]
[tex]\frac{\sqrt{3} }{\sqrt{12} } = \frac{\sqrt{3} }{\sqrt{12} } \cdot \frac{\sqrt{12} }{\sqrt{12} } = \frac{\sqrt{36} }{12} = \frac{6}{12} = \frac{1}{2}\\\frac{\sqrt{3} }{\sqrt{12} } \in \mathbb{Q}[/tex]
[tex]\sqrt[3]{64} = 4\\\sqrt[3]{64} \in \mathbb{Q}[/tex]
[tex]\pi \notin \mathbb{Q}[/tex]
[tex]\frac{\sqrt{2} - 2}{\sqrt{2} } =\frac{\sqrt{2} - 2}{\sqrt{2} } \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{2 - 2\sqrt{2} }{2} = 1 - \sqrt{2}\\\frac{\sqrt{2} - 2}{\sqrt{2} } \notin \mathbb{Q}[/tex]
[tex]\left( \sqrt{3} \right)^0 = 1\\\left( \sqrt{3} \right)^0 \in \mathbb{Q}[/tex]
Należy podkreślić liczby [tex]\pi[/tex] oraz [tex]\frac{\sqrt{2} - 2}{\sqrt{2} }[/tex].