Odpowiedź:
[tex](\sqrt[3]{27}+\sqrt{49})^2\cdot\sqrt{\frac{1}{4}}-\sqrt{\frac{1}{4}}+\sqrt{62\frac{1}{2}}:\sqrt{\frac{5}{8}}=(3+7)^2\cdot\frac{1}{2}-\frac{1}{2}+\sqrt{62\frac{1}{2}:\frac{5}{8}}=\\\\=10^2\cdot\frac{1}{2}-\frac{1}{2}+\sqrt{\frac{\not125^5}{\not2_{1}}\cdot\frac{\not8^4}{\not5_{1} }}=\not100^5^0\cdot\frac{1}{\not2_{1}}-\frac{1}{2}+\sqrt{25\cdot4}=50-\frac{1}{2}+\sqrt{100}=\\\\=50-\frac{1}{2}+10=60-\frac{1}{2}=59 \frac{1}{2}[/tex]