1. Tu trzeba zostawić w postaci potęgi
a) [tex](\frac{2}{3})^{3} * (\frac{2}{3})^{2} = (\frac{2}{3})^{5}[/tex]
b) [tex]1,5^{8} / 1,5^{5} = 1,5^{3}[/tex]
c) [tex](3^{3} * 2^{3})^{2} = 3^{6} * 2^{6} = (3 * 2)^{6} = 6^6[/tex]
d) [tex](\frac{2}{7} )^5 * 7^5 = (\frac{2}{7} * \frac{7}{1} )^5 = 2^5[/tex]
2. Tu trzeba zapisać rozwiązanie
a) [tex]9^4 / (3^3)^2 = 9^4 / 9^2 = 9^2 =[/tex] 81
b) [tex]\frac{4^5}{2^7} = \frac{(2^2)^5}{2^7} = \frac{2^{10}}{2^7} = 2^3 =[/tex] 8
c) [tex](\frac{5^4}{25} )^2 = (\frac{5^4}{5^2} )^2 = \frac{5^8}{5^4} = 5^4 =[/tex] 625
d) [tex]\frac{9^2 * 3^3}{3^5} = \frac{(9^2)^2 * 3^3}{3^5} = \frac{3^4 * 3^3}{3^5} = \frac{3^7}{3^5} = 3^2 =[/tex] 9