Odpowiedź :
[tex]c=\sqrt{a^2+b^2}[/tex]
b) [tex]c=\sqrt{6^2+8^2}\\c=\sqrt{36+64}\\c=\sqrt{100}\\c=\boxed{10\,cm}[/tex]
c) [tex]c=\sqrt{5^2+12^2}\\c=\sqrt{25+144}\\c=\sqrt{169}\\c=\boxed{13\,cm}[/tex]
c - przeciwprostokątna
b) a = 6cm b = 8cm
[tex]a^{2} + b^{2} = c^{2}[/tex]
[tex]6^{2} + 8^{2} = c^{2}[/tex]
36 + 64 = c²
100 = c²
c = [tex]\sqrt{100}[/tex] = 10
(trójkąt pitagorejski)
c) a = 5cm b = 12cm
[tex]a^{2} + b^{2} = c^{2}[/tex]
[tex]5^{2} + 12^{2} = c^{2}[/tex]
25 + 144 = c²
169 = c²
c = [tex]\sqrt{169}[/tex] = 13
(trójkąt pitagorejski)