Odpowiedź :
[tex]a) \: \: {3}^{3} \times {4}^{3} = {(3 \times 4)}^{3} = {12}^{3} > {11}^{3} [/tex]
[tex]b) \: \: {(3.5)}^{8} \div {(2 \frac{1}{3}) }^{8} = {( \frac{35}{10} \div \frac{7}{3}) }^{8} = {( \frac{7}{2} \times \frac{3}{7} )}^{8} = {( \frac{3}{2}) }^{8} = {(1 \frac{1}{2}) }^{8} < {2}^{8} [/tex]
[tex]c) \: \: {(1 \frac{1}{4} )}^{6} \times {( \frac{3}{7}) }^{6} \div {( \frac{5}{14}) }^{6} = {( \frac{5}{4} \times \frac{3}{7} \times \frac{14}{5}) }^{6} = {( \frac{6}{4} )}^{6} = {( \frac{3}{2} )}^{2} \: czyli \: znak \: = [/tex]
[tex]d) \: \: {(3 \frac{2}{3} )}^{5} \div {( \frac{11}{18}) }^{5} \times {( \frac{5}{6}) }^{5} = {( \frac{11}{3} \times \frac{18}{11} \times \frac{5}{6} ) }^{5} = {5}^{5} < {6}^{5} [/tex]
Odp. Czyli kolejno znaki: >, <, =, <.
Mam nadzieję, że pomogłam! ❤️