Suma dwóch liczb jest równa -2 1/4, a ich różnica 11 3/4. Co to za liczby?
PROSZĘ O SZYBKA POMOC DAJE NAJJJJ!!!


Odpowiedź :

Odpowiedź:

x - pierwsza szukana liczba

y - druga szukana liczba

x+y=-2¼

x-y=11¾

x=11¾+y

11¾+y+y=-2¼ |-11¾

x=11¾+y

2y=-14 |÷2

y=-7

x=11¾-7=4¾

Odp.: Szukane liczby to -7 i 4¾.

Odpowiedź:

[tex]a=4\frac{3}{4} ; b=-7[/tex]

Szczegółowe wyjaśnienie:

a- pierwsza liczba

b- druga liczba

z układu równań zapisujemy:

[tex]\left \{ {{a+b=-2\frac{1}{4}} \atop {a-b=11\frac{3}{4}}} \right.[/tex]

teraz możemy dodać stronami te równania, aby pozbyć się jednej zmiennej, w naszym wypadku zmiennej "b", otrzymamy:

[tex]2a=-\frac{9}{4}+\frac{47}{4}[/tex] - po zamianie liczb całkowitych na ułamki

[tex]2a=\frac{38}{4} \\a=\frac{19}{4} => a=4\frac{3}{4}[/tex]

i teraz liczymy "b" podstawiając do pierwszego równania:

[tex]\frac{19}{4} + b = -\frac{9}{4}\\b = -\frac{9}{4} - \frac{19}{4}\\b = -\frac{28}{4}\\b = -7[/tex]

Przypomnę zamianę liczby z ułamkiem na ułamek:

[tex]11\frac{3}{4} => 11*4+3 = 44+3 = 47 => \frac{47}{4}[/tex]

Viz Inne Pytanie